options(warn=-1)
Gamma Distribution The Gamma Distribution is commonly used distribution for a continous random variable that only take values on non negative values 0 <= x < inf
it has a probability density function g(x;a,b) ==> k(x^(r-1))((exp(1))^(-vx)) for 0<= x < inf*
the shape of the curve is determined by (x^(r-1))((exp(1))^(-v*x)) and k is the constant to make this equation probabaility density function
k (constant) is generalization of factorial function v^r/Fact(r)
so lets create probability density function for gamma distribution
gamma<-function(x,r,v){
k = (v**r)/(factorial(r))
gammf<- k*(x^(r-1))*((exp(1))^(-v*x))
print(paste("k is : " ,k))
return(gammf)
}
lets create a variable that ranges between 0 and inf
x <- seq(0, 5, length = 21)
define a and b values
r_v <- c(1,2,3,4,5)
plot probability densities with loop
dist<-NULL
for (r in r_v){
for (v in r_v){
dist<- gamma(x,r,v)
plot(x,dist,type="b",col="blue",main = paste("Gamma (",r,",",v,")"),ylab="density")
}
}
## [1] "k is : 1"
## [1] "k is : 2"
## [1] "k is : 3"
## [1] "k is : 4"
## [1] "k is : 5"
## [1] "k is : 0.5"
## [1] "k is : 2"
## [1] "k is : 4.5"
## [1] "k is : 8"
## [1] "k is : 12.5"
## [1] "k is : 0.166666666666667"
## [1] "k is : 1.33333333333333"
## [1] "k is : 4.5"
## [1] "k is : 10.6666666666667"
## [1] "k is : 20.8333333333333"
## [1] "k is : 0.0416666666666667"
## [1] "k is : 0.666666666666667"
## [1] "k is : 3.375"
## [1] "k is : 10.6666666666667"
## [1] "k is : 26.0416666666667"
## [1] "k is : 0.00833333333333333"
## [1] "k is : 0.266666666666667"
## [1] "k is : 2.025"
## [1] "k is : 8.53333333333333"
## [1] "k is : 26.0416666666667"
we can see same shapes with different parameters of r,v but the area under curves are differs from each other
Thanks: Hincal Topcuoglu