library(plyr)
define shannon entropy
shannon_entropy <- function(x){
df = count(x)
n = length(x)
df$probs = df$freq / n
se<- -sum(df$probs * log(df$probs))
return(se)
}
discrete_normal_arr<-NULL
for ( i in seq(1000,100000,10)){
discrete_normal_arr[i]<-shannon_entropy(round(rnorm(i, 500, 10), 0))
}
hist(discrete_normal_arr, prob=TRUE, ylim=c(0,150), breaks=50)
curve(dnorm(x, mean(discrete_normal_arr), sd(discrete_normal_arr)), add=TRUE, col="darkblue", lwd=2)
Yes thats'it :)